
A DISTRIBUTED AND REPLICATED SERVICE

FOR CHECKPOINT STORAGE

Fatiha Bouabache
Laboratoire de Recherche en Informatique

Universite Paris Sud-XI, 91405 ORSAY, FRANCE.

fatiha.bouabache@lri.fr

Thomas Herault
INRIA Futurs/Laboratoire de Recherche en Informatique

Universite Paris Sud-XI, 91405 ORSAY, FRANCE.

thomas.herault@lri.fr

Gilles Fedak
INRIA Futurs/Laboratoire de Recherche en Informatique

Universite Paris Sud-XI, 91405 ORSAY, FRANCE.

fedak@lri.fr

Franck Cappello
INRIA Futurs/Laboratoire de Recherche en Informatique

Universite Paris Sud-XI, 91405 ORSAY, FRANCE.

fci@lri.fr

Abstract As High Performance platforms (Clusters, Grids, etc.) continue to grow in size,
the average time between failures decreases to a critical level. An efficient and
reliable fault tolerance protocol plays a key role in High Performance Computing.
Rollback recovery is the most common fault tolerance technique used in High
Performance Computing and especially in MPI applications. This technique
relies on the reliability of the checkpoint storage, most of the rollback recovery
protocols assume that the checkpoint servers machines are reliable. However, in
a grid environment any unit can fail at any moment, including components used
to connect different administrative domains. Such a failure leads to the loss of
a whole set of machines, including the more reliable machines used to store the
checkpoints in this administrative domain. It is thus not safe to rely on the high
MTBF of specific machines to store the checkpoint images.

This paper introduces a new protocol that ensure the checkpoint storage
reliability even if one or more Checkpoint Servers fail. To provide this reliability
the protocol is based on a replication process. We evaluate our solution through
simulations against several criteria: scalability, topology, and reliability of the
nodes. We also compare between two replication strategies to decide which one
should be used in the implementation.

Keywords: high performance computing,fault tolerance,replication,rollback recovery

296 MAKING GRIDS WORK

1. Introduction

High Performance Computing has an important role in scientific and en-
gineering researches. As the size of High Performance Systems increases
continuously, the average time between failures becomes increasingly small. So
Fault Tolerance becomes a critical property for Parallel applications running
on these systems. MPI (Message Passing Interface) paradigm is actually the
most used to write parallel applications. However, in traditional implementa-
tions, when a failure occurs, the whole distributed application is shutdown and
restarted [1]. To avoid this, many solutions have been proposed, but the most
used is Rollback Recovery [2]. Rollback recovery is based upon the concept
of a checkpoint. A checkpoint describes the state of one or more components
of the system at a given time of its execution. These checkpoints are built
from images of processes and the state of communication channels. During
its execution, the system takes checkpoints according to a scheduling policy.
When a failure occurs, some processes rollback to their last images. The fault
tolerance protocol must ensure that the system is in a coherent state which al-
lows it to continue its execution. With coordinated checkpoint protocols, all the
processes are synchronized and take their images at the same time, by building
a coherent state and a global image of the system called a snapshot. A snapshot
is a collection of checkpoint images (one per process) with the state of the
different communication channels [3]. When a failure occurs, all the processes
must rollback together to the last coherent state, so the checkpoint images of
all the processes must be available simultaneously. Usually, checkpoint images
are kept for the two last checkpoint waves in order to spare storage resources.
If the checkpoint images are not available, the rollback technique fails. These
protocols often assume that Checkpoint storage is made by special dedicated
and reliable machines named Checkpoint servers.

A grid is an infrastructure consisting of the aggregation of several distributed
resources, usually from different administrative domains. There are many
kind of grids, and we focus in this study on the cluster of clusters: companies
and universities build large supercomputers by aggregating the resources of
different clusters. Using such a grid, users expect to obtain larger systems more
suitable to address the complexity of their problems. One of the features of
a grid is its size, orders of magnitude larger than a single cluster. Moreover,
a grid spans multiple domains and is characterized by a topology including
few interconnection points linking many components. In a single cluster, if
the failure hits the switch or the interconnection mechanism, each component
is disconnected from the others and the failure may be considered as fatal. If
one of the interconnection point fails, a whole cluster is lost for the rest of
the system, including its most reliable components. So, no machine can be
considered as reliable anymore. In a grid, however, the amount of resources lost
by the failure of a router may be tolerable.

In this paper, we introduce a distributed checkpoint storage service of coordi-
nated Rollback Recovery Protocols suited for clusters of clusters. It addresses
the issues related to the Grid Model: to ensure the checkpoint storage reliability,
even though one or more checkpoint servers fail, we use a replication process.

A Distributed and Replicated Service for Checkpoint Storage 297

We compare two different strategies of replication named simple and hierarchi-
cal. The paper is organized as follows. Section 2 presents the Grid and failure
models we consider. Section 3 presents the related works. Section 4 introduces
our protocol for distributed checkpoint storage. We evaluate performances of
our approach and we compare two different replication techniques in section 5.
Last, we draw our conclusions in Section6.

2. System Model
We consider a High Performance Grid made up of powerful computer servers.

We also consider the grid environment as an aggregation of C clusters, each
cluster i includes Ni machines. To store the checkpoint images, we define in
each cluster a set of checkpoint servers. Thus, in a cluster, we have two kinds
of processes. Clients processes that carry out calculations and regularly transfer
their checkpoint images to the storage service; and checkpoint servers (CS),
which maintain the checkpoint storage. All checkpoint servers within the same
cluster are pooled in a group. The different clusters are linked over front-end
machines. Figure 1 illustrates the architecture of our system.

We assume that any component of the system can fail at any time, and we
consider that there exists a coordinated checkpoint protocol which handles the
clients failures. Therefore, we propose a solution to handle the checkpoint
server failures to ensure the storage service reliability even when a checkpoint
server fails. We consider two types of behaviors:

a failure may hit a checkpoint server in a cluster.

a failure may hit the cluster’s front-end machine, or a set of failures dis-
connects a whole cluster from the rest of the grid. For the clusters which
remain connected, all the components of the cluster fail simultaneously.

To increase the protocol flexibility, we make the following assumptions :

We consider a group failure if we lose a connection with the checkpoint
servers of this group (e.g.: a front-end failure). We suppose that it cannot
be more than K group failures, with 0 ≤ K ≤ C − 1.

In the case of a group failure, the computation which was executed in this
cluster get restarted on new one.

We suppose that for a number of checkpoint servers ni in group i, 0 ≤
i ≤ C − 1, at a given moment, there cannot be more than ki checkpoint
servers failures, 0 ≤ ki < ni.

These numbers are fixed according to the mean time between failures in the
system. Our solution relies on a distributed checkpoint service. To ensure
the reliability of this service, we use a replication protocol. We replicate
Checkpoint images over checkpoint servers, so that a valid replica is available
even though one or more checkpoint servers fail. To tolerate ki failures in a
group i, 0 ≤ i ≤ C − 1, we must have at least ki + 1 replicas in this group.
To tolerate a group failure, we also replicate the checkpoint images outside the
cluster which hold them. So, to tolerate K group failures, with 0 ≤ K ≤ C −1,
we replicate the checkpoint images over K + 1 different groups.

298 MAKING GRIDS WORK

Figure 1. System Architecture

3. Related Works
In checkpoint-based protocols, during the execution the computation state

is periodically saved. Then when a failure occurs, the computation is restarted
from the last saved state. Checkpoint based protocols can be classified into
three categories: coordinated checkpointing, uncoordinated checkpointing,
and message logging [4]. The first coordinated checkpointing protocol for
distributed applications was proposed by Chandy and Lamport in [3]. This
solution assumes that all the channels are FIFO and any process can decide
to initiate a checkpoint wave. This algorithm is implemented in many fault
tolerant message passing libraries, such as LAMMPI [5], MPICH-V [4]. Other
techniques like Checkpoint Induced Communication [6] try to limit the size
of the coordinated set to build the global coherent snapshot. This technique
has also been implemented in other fault-tolerant libraries, like the proactive
communication library [5]. All these techniques assume the ability to store the
checkpoint images in a reliable media which is not subject to failures.

Other checkpoint based solutions exists without relying on stable storage, [8]
introduces a disk-less checkpointing solution. This solution defines a way to
perform fast, incremental checkpointing by using N+1 parity, which reduces
high memory overhead required by disk-less checkpointing methods. However,
after a failure, all processors communicate with the parity, which can cause a
communication bottleneck. Also, the solution is based on the parity machine
which should never fail. Others distribute the checkpoint images directly in
the memory of the computing peers, like for the FT-MPI project [9], or the
Charm++ project [10]. However, storing the checkpoint image in the memory
of the other processes implies either to use twice the memory necessary for
the application or remove the transparency assumption and to use user-driven
serialization of the checkpoint image. [11] describes disk-based and memory-
based checkpointing fault tolerance schemes. The goal of this solution is to
automate the checkpointing and the restarting of the tasks, and thus to avoid
writing additional code. These schemes are based on the works presented in
[12] and [13]. In [14] a new solution based on the assumption that some failures
are predictable is introduced. It pro-actively migrates execution from processors
suspected to fail. This solution is based on processor virtualization and dynamic
task migration ideas provided on [15] and [12]. [16] introduces a fault tolerance

A Distributed and Replicated Service for Checkpoint Storage 299

protocol that provide fast restarts. This protocol uses the concepts of message
logging and processor virtualization. It does not assume the existence of reliable
component that never fails.

The goal of the replication services is to keep the states of the different
replicas coherent, by implementing the adequate primitives. The two major
classes of replication techniques ensuring this consistency are: active replication
[17] and passive replication [18]. Simple replication is not adequate for high
performance computing. Indeed, to tolerate n failures every component must
be replicated n times. Thus, the computation resources are divided by n.
Replication is however a mechanism used to ensure the accessibility of data
in fault tolerance protocols. [19] considered distributing generic data on the
grid using distributed hash tables, and evaluated the efficiency of this approach
for storing checkpoint images for fault tolerance. However, this technique
is not focused on the coordinated checkpoint protocols, which induce a peak
overload on the EDG network, and we believe that hierarchical techniques
are more suited than DHTs for this kind of topology. [20] and [21] introduce
solutions to ensure availability of some failures points (e.g. the head node
of a cluster architecture) using redundancy. These solutions are based on the
asymmetric and symmetric Active/Active High availability. Active/Active High
availability means that several replicas are active in the same time. Wherease in
the asymmetric one there is not any coordination between the active replicas, in
the symmetric one the active replicas maintain a common global component
state.

4. Checkpoint Storage Protocol
Our checkpoint storage protocol, based on a distributed checkpointing ser-

vice and a replication process, proceeds in two phases. The recording phase,
responsible for images storage, and the recovery phase executed when a failure
occurs on some calculation nodes.

4.1 The Recording Phase
The recording phase proceeds in two steps. First, clients send their images to

the CSs within the same cluster. Second, those images are replicated amongst
the CS group within the local cluster, and in remote clusters. In order to improve
the performances, image sending is made on a distributed way. A checkpoint
image is split in several parts of fixed size named chunks. We call f j

c the jth
chunk of the cth client checkpoint image. During the building of the checkpoint
image, the client builds his chunks and sends them to the CSs of its cluster.
The client memorizes a list of CSs that received its chunks. At the end, the
client keeps a local copy of its checkpoint image, then it sends to all the CSs
on its cluster the finalize message which contains the chunks number. The
image is considered safely stored, when the client receives acknowledgments
(ACKs) for all its chunks. If the client detects a CS failure before the reception
of the corresponding ACK, it selects another CS and resends the corresponding
chunks. If the client fails during the transfer, the checkpoint wave get cancelled,
a new resource equivalent is allocated, and the application is restarted from its
last checkpoint.

300 MAKING GRIDS WORK

Figure 2. Example of execution

In the second step, chunks are replicated on the CSs, we consider that a
chunk f is correctly replicated in the group i if and only if f is replicated on
ki + 1 servers in this group. According to the assumption on the number of
tolerated failures, a chunk is considered recorded, if it is correctly replicated in
K + 1 groups.

4.1.1 Replication Strategies. .
1. Simple Replication Strategy: We have adapted the passive replication

technique : each checkpoint server receiving a chunk ckj
c from the client

c becomes primary of this chunk, and must ensure its replication. When a
checkpoint server s primary of a certain number of chunks fails, a new server is
selected to become primary of all the chunks of s.

During the replication step, a CS s can play several roles according to the
origins of the received chunks. First, receiving a chunk from the client, s is
considered primary of this chunk. It is responsible of the correct replication of
this chunk in its group and on K different groups before sending the acknowl-
edgement to the client (ACKf in figure 2). Second, if it receives a chunk from
a CS s′ 6= s from another group i′ 6= i, it is considered as a pseudo-primary of
this chunk in its group. It is then responsible to replicate the chunk in its group
and to send the acknowledgement to the primary s′ (ACKg in figure 2). The
last role, intermediary is played by a CS when it receives a chunk from another
CS within its group. In this case, the CS sends directly the acknowledgement to
the primary or to the pseudo-primary (ACK1, ACK2, and ACK3 in figure 2).
During the replication step, the chunks received from clients have the greatest
priority, than those received from the other CSs, and finally those received from
the other clusters.

With the Simple Replication Strategy (SRS), the primary CS does the repli-
cation over all the other CSs of its group, then over the other groups. Then
each pseudo-primary does the replication over all the other CSs of its group.
So a CS s receiving a chunk ck from a client or from another group sends it to
(s + i)mod[2m], 1 ≤ i < 2m. With this technique, an intermediary CS has no
active role in the replication process.

2. Hierarchical Replication Strategy: To accelerate the replication process,
we introduce another strategy. Its goal is that each CS in the system has an
active role, including the intermediary ones. For that we define for each CS s a

A Distributed and Replicated Service for Checkpoint Storage 301

set of CSs with identifiers {s, s + 20, s + 21, · · · , s + 2m−1} called children.
Fig.2 presents a diagram of an execution of the replication step with this strategy.
The primary server of a chunk ckj

c replicates it on the children servers which
constitute the first level of replication, then, each CS receiving this chunk must
replicate it over its own children servers, carrying on that way until all the CS
have received the chunk. To avoid replicating a chunk twice on the same CS, a
request is sent before each replication (the third step in Fig.2).

During the execution of a checkpoint wave, two cases may happen : 1) the
execution finishes without any CS failure, and 2) some checkpoint servers fail
before the end of the wave. If a primary CS s fails during the replication, a new
primary s′ is selected to handle the primary chunks of s. A client detecting the
failure of s before the reception of its acknowledgement, resends the chunk to
s′. The CSs are organized on a circular list, so when a primary CS fails the new
primary is simply the next in the list. s′ will check the replication status before
the breakdown. In case the replication was started before the failure, it sends a
request to collect the acknowledgements from the other CSs to know if they have
received the chunk by the last primary. When a CS in the same group receives
this request, it acknowledges the previous reception of the chunk, or asks for
it if it has not received it before. When a CS from another group receives this
request, it checks the previous reception of the chunk, then it verifies if a correct
replication was made in its group before sending an acknowledgment to the
primary, otherwise, it asks for it.

At the end of the recording phase the CS has to check if all the clients of the
same distributed application have correctly recorded their images, then validate
locally the checkpoint wave.

4.2 The Recovery Phase
In the beginning of this phase, a consensus is executed between the different

CSs to define the last valid wave: each CS proposes the number of its last valid
wave, and the goal is to arrive at an agreement. As several checkpoint wave
can be done before failure, the client starts by asking for the last valid wave,
and checks whether the image is available locally. Otherwise, it requests its
image from the CSs within its cluster. As for the recording, recovery is done
in a distributed way: the client sends its request of recovery to all the CS of its
group, then a CS receiving the request provides chunks of which is primary.
Finally, once all the chunks are recovered, the image is reconstituted, and the
client is restarted.

5. Performance Evaluation
We study our solution using the SimGrid [22] simulator. SimGrid provides

the main functionalities for the simulation of distributed applications in hetero-
geneous distributed environments. We particularly use MSG, the first distributed
programming environment provided within SimGrid. It allows us to study the
different heuristics of the issues before the implementation. It makes it possible,
in the first stage, to validate our solution and especially to carry out a good
comparison between the two replication strategies.

302 MAKING GRIDS WORK

Running a simulation with Simgrid requires as input two files in XML for-
mats. These files do not only describe the simulation parameters and dynamics
(e.g. links and machines failures) but also the network topology. We suppose
that the Checkpoint Servers of a group are connected between them through
a complete graph. The number of CS is small, so we will have a realistic
number of connections to manage. However, for the inter clusters connections,
we choose a graph much less connected, where each CS will only have one
outgoing connection. For all the experimentation, the links within a cluster are
homogenous, as are the CSs and the clients.

5.1 Impact of the Topology
We first investigated the impact of the clients number, and thus the size of

the data to be stored. For that, we fixed the cluster and the CSs numbers in
the system (c = 1 cluster and s = 6 CSs), and we varied the clients number.
The first curve in Fig.3, the checkpoint wave, presents the wave execution
time according to the number of clients. We notice that the execution time is
proportional to the number of clients. This is not surprising since more clients
means a larger quantity of data to store and to replicate, and thus the wave
of checkpoint takes more time. To identify which one of the two checkpoint
phases influences the execution time, we isolated the recording phase. The
corresponding measurement in Fig.3 shows that the execution time of the
recording step increases slowly. This is expected, because in theory this step is
executed in a parallel way and it takes xl/N time unit (where x is the number
of chunks per client, l the size of a chunk, and N the link capacity) whatever
the clients number is . In practice, the observed increasement is due to the
saturation of the communication bottleneck. So the growing of the checkpoint
wave execution time when a clients number increases is caused by the replication
phase execution time. In theory the execution time t of the replication phase is:

t = kxl(
1

N
− 1

sN
)

Thus when the clients number k increases the execution time of the replication
phase increases proportionally.

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

tim
e

 (
se

co
n

d
s)

number of clients

checkpoint wave
recording phase

Figure 3. Scalability of the checkpoint

The goal of the second experimentation is to evaluate the impact of the
network topology. In order to do this, we consider a fixed number of clients

A Distributed and Replicated Service for Checkpoint Storage 303

k = 100, a fixed number of CSs s = 30, and we make vary the number of
clusters c. Thus, there is k/c clients and s/c servers in each cluster; every client
has x chunks of size l. The links have a capacity of N MB/s within a cluster and
N ′ MB/s between clusters. Theoretically, the checkpoint wave over c clusters
takes the time t defined so:

t =
xl

N
+

2xkl

N
+

xkl

sN
+

xkl

N ′
− 1

c
(
xkl

N
+

xkl

N ′
) − cxkl

sN
The curve resulting from this equation is presented in Fig.4.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8 9 10

tim
e

(s
e

co
n

d
s)

number of clusters

Figure 4. Impact of the topology and
comparison with the thoeretical result

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10

ti
m

e
(s

e
c
o
n
d
s
)

number of clusters

execution time of the checkpoint wave

Figure 5. Impact of the topology

The first curve, Fig.5, presents the result of this second experimentation. To
better understand the result we isolated the recording phase (the second curve,
Fig.6), and the local replication (the last one, Fig.7). When the cluster number
increases, the clients number per cluster decreases, and thus the recording phase
execution time decreases. However, although the number of checkpoint servers
per cluster decreases, the execution time of the local replication increases,
because there is overlapping between this phase and the rest of the execution,
which reduces the global execution time of the checkpoint wave.

5.2 Impact of the Replication
To evaluate the two replication strategies, we first investigated the effect

of the CSs in the system and thus the effect of the replication. For doing
this, we fixed the clients number k = 200 and we varied the CSs number s.
Figure 8 shows that the execution time of the checkpoint wave, particularly
the replication phase increases considerably and proportionally with the CSs
number. Theoretically, the execution time t of the replication phase is:

t =
kxl

N
− kxl

sN
So when s increases the execution time of the replication phase increases too.
To compare the effect of the hierarchical replication versus the simple one,

we fixed the clients and the chunks numbers per client, and we varied the CSs
number. Then we launch two series of executions with the two strategies. These
experiments are carried out to decide which replication strategy will be used
in the implementation. As we can see in Fig.9, the best replication strategy
depends on the number of CSs. The hierarchical one does additional checks

304 MAKING GRIDS WORK

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 2 3 4 5 6 7 8 9 10

tim
e

(s
e

co
n

d
s)

number of clusters

the recording phase

Figure 6. Impact of the topology on the
recording phase

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8 9 10

tim
e

(s
e

co
n

d
s)

number of clusters

local replication

Figure 7. Impact of the topology on the
replication phase

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 5 10 15 20 25 30 35 40 45 50

ti
m

e
(s

e
c
o

n
d

s
)

number of cs

checkpoint wave
recording phase

Figure 8. Impact of the Replication.

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0 5 10 15 20 25 30 35 40 45

tim
e

 (
se

c)

number of CS

hierarchical replication
a simple replication

Figure 9. Comparison between hierarchi-
cal and simple replication.

for the presence of chunks onto the secondary CSs before each sending. As we
give the first priority to the chunks received from clients, and every CS received
data from clients when Css number is low, the additional checks increases
needlessly the execution time, which makes the simple replication better than
the hierarchacal. However, when the CSs number increases, the hierarchical
replication allows overlapping of communications to secondary CSs, and so
the acceleration of the replication phase. We observe that when the simple
replication is better, the difference is small because the checks message size is
smaller than the chunk size. Although the execution time of the recording phase
should be fixed, increasing the number of clients or decreasing the number
of CSs makes the recording phase more aggressive, in the sense that the size
of data to be stored increases or the storage devices number decreases which
causes communication bottleneck.

6. Conclusion
An efficient and reliable fault tolerance protocol plays a key role in High

Performance Computing and especially in MPI applications. Rollback recovery
is the most used technique in such environments. To ensure a high level of fault
tolerance, the rollback recovery techniques rely on the availability of checkpoint
images at rollback time. Usually, rollback/recovery protocols often assume
that Checkpoint storage is made by special dedicated and reliable machines
named Checkpoint servers. In a grid, however, no machine can be considered

A Distributed and Replicated Service for Checkpoint Storage 305

as reliable anymore, since even machines with a high MTBF are located inside
a cluster which may be entirely disconnected from the rest of the grid.

In this work, we introduced a distributed checkpoint storage service of
coordinated Rollback Recovery Protocols suited for clusters of clusters. It
addresses the issues related to the Grid Model: to ensure the checkpoint storage
reliability, even though one or more checkpoint servers fail, we use a replication
process.

We compared two replication strategies, a simple direct strategy, where a CS
receiving image from a client uploads this image to each and every one of the
CSs; and a hierarchical one, where CSs synchronize with each others to ensure
the replication. This comparison shows that the strategy choice depends on the
system topology, particularly the CSs and the clients numbers.

The different experimentations show that the execution time of the replication
phase takes much more time than the recording one. A long time of the
checkpoint wave execution decreases the checkpoint wave frequency. To avoid
this we propose to consider the checkpoint wave as done when the recording
phase is finished. So, a CS sends the acknowledgments when it received the data,
then it does the replication. Thus we increase the checkpoint wave frequency.
If a CS fails before the end of the replication, and some data is lost, we cancel
this step, and we consider the last wave for which the replication is successfully
finished.

For the future, first we will evaluate our approach via an experimenation in a
real experimental grid. Then, we would like propose a new scheduling scheme
and a new replication strategy that improve the performances of our protocol.

References
[1] W. Groop and E. Lusk, Fault Tolerance in MP Programs. OAI-PMH server at

cs1.ist.psu.edu, 2002
[2] E. N. Elnozahy et al.A survey of Rollback-Recovery Protocols in Message-Passing Sys-

tems, Journal "CSURV: Computer Surveys", volume 34, 2002.
[3] K.M. Chandy and L. Lamport, Distributed snapshots: Determining global states of dis-

tributed systems.
ACM Transactions on Computer Systems (TOCS), 3(1):63? 75, 1985.

[4] A. Bouteiller et al.Mpich-v: a multiprotocol fault tolerant mpi. International Journal of
High Performance Computing and Applications, 20(8):319?333, fall, 2006.

[5] G. Burns, R. Daoud, and J. Vaigl. LAM: An open cluster environment forMPI, 1994.
[6] L. Alvisi et al.An analysis of communication induced checkpointing. In Proceedings of the

symposium on fault-tolerant computing, pages 242?249, 1999.
[7] F. Baude et al.A hybrid message logging-cic protocol for constrained checkpointability. In

Proceedings of EuroPar2005, LNCS, 2005.
[8] James S. Plank and Kai Li, Faster Checkpointing with N+1 Parity, 24th International

Symposium on Fault-Tolerant Computing, Austin, TX, June, 1994, pp 288–297.
[9] Z. Chen et al.Building fault survivable MPI programs with FT-MPI using diskless-

checkpointing. In Proceedings of the tenth ACM SIGPLAN Symposium on (PPoPP),
June 2005.

[10] G. Zheng, L. Shi, and L. V. Kale. Ftc-charm++: an inmemory checkpoint-based fault toler-
ant runtime for charm++ and mpi. In Proceedings of the IEEE International Conference
on Cluster Computing, USA, 2004. IEEE Computer Society.

[11] C. Huang et al.Performance evaluation of adaptive MPI. PPOPP 2006: 12-21
[12] L. V. Kale and S. Krishnan. Charm++: Parallel programming with message-driven objects.

In Wilson, G.V., Lu, P., eds.: Parallel programming using C++. MIT Press (1996) 175-213.

306 MAKING GRIDS WORK

[13] L. V. Kale. The Virtualization approach to Parallel Programming: Runtime Optimization
and the State of Art. In LACSI 2002, Albuquerque, October 2002.

[14] S. Chakravorty, C. L. Mendes, and L. V. Kalé, Proactive Fault Tolerance in MPI Applica-
tions Via Task Migration. HiPC 2006: 485-496

[15] L. V. Kale and S. Krishnan. Charm++: Parallel programming with message-driven objects.
In Wilson, G.V., Lu, P., eds.: Parallel programming using C++. MIT Press (1996) 175-213.

[16] S. Chakravorty and L. V. Kalé, A fault tolerance Protocol with Fast Fault Recovery,
Accepted for publication at IPDPS 2007.

[17] R. Guerraoui and A. Schiper. Software based replication for fault tolerance. IEEE Com-
puter, 30(4):68?74, Apr. 1997.

[18] N. Budhiraja et al.The primary-backup approach, Dec. 01 1993.
[19] L. Rilling and C. Morin. A practical transparent data sharing service for the grid. In Proc.

Fifth InternationalWorkshop on Distributed SharedMemory (DSM 2005), Cardiff, UK,
May 2005. Held in conjunction with CCGrid 2005.

[20] C. Leangsuksun et al.Asymmetric active-active high availability for high-end computing.
In Proceedings of (COSET-2), in conjunction with the 19th ACM International Conference
on Supercomputing (ICS), Cambridge, MA, USA, 2005.

[21] C. Engelmann et al.Symmetric active/active high availability for high-performance com-
puting system services. Journal of Computers (JCP), 1(8), 2006.

[22] INRIA. Simgrid project. http://simgrid.gforge.inria.fr.

